Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE, VASHI DEPARTMENT OF COMPUTER SCIENCE

MINUTES OF THE MEETING

BOS Meeting for the academic year 2018-19 was called on 13th February 2019 at 2.30 pm by meeting Head Dr. Manisha Abhyankar.

Sr. No.	Name	Designation	Position	Signature
1	Dr. Manisha Abhyankar	Head	Chairman	Imisha
2	Dr. G. K. Gupta	Principal Sevasadan College, Ulhasnagar	Member nominated by Vice Chancellor	and and
3	Dr.Shabina Gulam Ahmed Sayyed	Head Department of Computer Science	Member experts from outside the Parent University	Quartyo
4	Mr. Ganesh Dhondu Dangat	Asst. Prof. K.B.P. College of Engg. Satara	Member experts from outside the Parent University	U 1 12119
5	Mrs. Deepali Adhyapak	Modern Engineering College, Pune	Member experts from outside the Parent University	
6	Mr. Saurabh Mukadam	Deputy Delivery Head In L&T Technology Services	Member- Industry Person	Sel.
7	Dr. Anjali N. Kulkarni	Asst. Prof. CKT College, New Panvel	Member, Experts from Parent University	maulan
8	Mr. Prashant Londhe	Asst. Prof. Gogate-Jogalekar College.Ratnagiri	Member, Experts from Parent University	Sprid Ignor

Members present:

9	Mr.Aashish Mandle	Security Analyst, Network Intelligence(I)	Member Meritorious Alumni	
10	Mrs. Dipti Kulkarni	Faculty Member	Member	Q81
11	Mr. Aniruddha Phadke	Faculty Member	Member	pus
12	Mrs. Nikisha Dakee	Faculty Member	Member	Palu
13	Ms. Deepali Patil	Faculty Member	Member	alt
14	Ms. Vrushali Raut	Faculty Member	Member	Ofant
15	Mrs. Swati Kadu	Faculty Member	Member	aut
16	Ms. Shaila Bhalerao	Faculty Member	Member	Shavela

Mrs. Manisha Abhyankar [Chairman, BOS committee] extended welcome to all the members of BOS.

Reading of Agenda:

Motion from Mrs. Manisha Abhyankar: To approve the agenda for 13th February 2019.
 Vote: All in favor.

Resolved: Motion carried.

Agenda for the meeting on 13th February 2018 approved without modification.

Business:

• Motion 1: Presentation of S.Y. B.Sc. [Computer Science] to Board of Studies (Computer Science) for approval.

Discussion: The syllabus of S.Y.B.Sc. [Computer Science] was presented to BOS members, we have discussed the following points,

- 1) We have shifted Linux from Sem II to Sem III. As Operating Systems subject is done in Sem I, here they are learning Linux Operating System.
- 2) In Sem III we have added advance topics in Web Programming subject and renamed as Advanced Web Technology. Here we have included advanced practical's. With this advanced concepts they can make their own website.

Suggestions:

- 1) They suggested to remove the man pages command from LINUX subject.
- They suggested not to mention the names of any proprietary software's due to the license issues.
- 3) They suggested to rearranged the practical's of Advanced Java Practical's.

Vote: All in favor.

Resolved: Motion carried.

• Motion 2: Presentation of M.Sc. II [Computer Science] to Board of Studies (Computer Science) for approval.

Discussion: The syllabus of M.Sc. II [Computer Science] was presented to BOS members.

Suggestions:

1) They suggested to remove Practical No. 7 & 8 of previous Ubiquitous Computing syllabus and added new two practical's.

2) They have suggested to update first two practical's of Advanced Operating Systems, removed third practical and added tenth practical.

Vote: All in favor.

Resolved: Motion carried.

 Motion 3: Presentation of F.Y. B.Sc. [Computer Science] to Board of Studies (Computer Science) for approval.

Discussion: The syllabus of F.Y.B.Sc. [Computer Science] was presented to BOS members, we have discussed the following points,

- In Sem I we have updated the syllabus of Discrete Mathematics subject. In Unit I we have added basic concept of Set Theory & Logic. We shifted remaining part of 1st unit in 2nd unit. From 2nd unit Counting Principles, Languages, Grammars and Machines are shifted in 3rd unit. We have removed detailed part of Graphs and Trees topics and included only basic concepts. We have added practical's related to Set Theory as practical number one. We shuffle practical numbers 1,2,3,4 to 4,5,6,9. We have removed the practical number 7,8,9 &10 based on graph theory & Trees as that topic is removed from syllabus.
- 2) In Sem I we introduced R language concept in Descriptive Statistics and Testing of Hypothesis. We have covered the remaining part of 1st unit in 2nd unit. We shift the remaining part of 2nd unit in 3rd unit. We have removed the Hypothesis testing & Non-parametric tests.

3) In Sem I we have introduced MySQL topic of Database Management Systems in Unit II. We have shifted Aggregate functions in 3rd unit. We have removed Database Protection & DCL Statements from Unit III. All the practical's are performed in MySQL. **Suggestions:**

1) All have agreed for the above discussion on subjects Discrete Mathematics and Database Management Systems.

Vote: All in favor. Resolved: Motion carried.

 Motion 4: Presentation of Evaluation pattern of F.Y.B.Sc, S.Y.B.Sc., T.Y.B.Sc., M.Sc. I, M.Sc. II [Computer Science] to the Board of Studies (Computer Science) for approval.

Discussion: The evaluation pattern for all the classes of Computer Science was presented to BOS members in first meeting.

Suggestions:

No changes

Vote: All in favor. Resolved: Motion carried.

• Motion 5: Presentation of Skill based Courses F.Y.B.Sc, M.Sc. I [Computer Science] to the Board of Studies (Computer Science) for approval.

Discussion: The syllabus of Skill based courses was presented to BOS members in first meeting and we have discusses Cyber Security Course syllabus.

Suggestions:

1) They suggested to give certificates in collaboration with college.

2) They suggested to introduce Advanced Python in skill based courses.

Vote: All in favor.

Resolved: Motion carried.

Motion 6: Presentation of Syllabus for courses, T.Y. [Computer Science] and M.Sc.
 I [Computer Science] to the Board of Studies (Computer Science) for approval.

Discussion: Syllabus for courses, B.Sc. III [Computer Science] and M.Sc. I [Computer Science] were presented to the BOS. These syllabi are given by University of Mumbai and to maintain the continuity, they will be implemented this year.

Vote: All in favor. Resolved: Motion carried.

Vote of thanks was proposed Mrs. Dipti Kulkarni.

Meeting adjourned at 4:30 pm.

Minutes of this meeting will be presented to BOS for approval.

ACTION TAKEN REPORT

[w.r.t. meeting held on 13th February 2019]

With introduction of F.Y.B.Sc, S.Y.B.Sc, M.Sc. II [Computer Science], skill based course syllabus and evaluation pattern to BOS members following are the actions taken:

A) F.Y.B.Sc [computer Science]

- We have added Set Theory Topic in theory as well as practical's in Discrete Mathematics Subject in Sem I. (Refer Annexure A)
- 2) We have added R language and removed the Hypothesis testing & Non-parametric tests. in Descriptive Statistics in Sem I. (**Refer Annexure B**)
- We have added MySQL topics and removed Database Protection & DCL Statements in Database Management Systems in Sem I. (Refer Annexure C)

B) S.Y.B.Sc [Computer Science]

- 1) We have removed the man pages command from LINUX subject in Sem III.
- 2) We have rearranged the practical's of Advanced Java subject Practical's in Sem III.
- We have changed Linux command related practical from Computer Networks subject in Sem IV.

C) M.Sc II [Computer Science]

- 1) We have removed two Ubiquitous Practical's and added new practical's.
- 2) We have removed two Advanced Operating System Practical's and added new practical's.

(Refer Annexure D)

ANNEXURE - A

Class: F.Y.B.Sc		Branch: Computer Science	ch: Computer Science Semester: I	
		Subject: Discrete Mathematics		
D 1	W 1/E 1 40		02	
Period per week(Each 48		Lecture	03	
IIIII) Evolu	ation Crustom	Practical	03	Masla
Evalua	ation System		Hours	Marks
		Semester End Exam	<u>Z</u>	60
		Continuous Internal Assessment		40
		Semester End Practical Examination	3	50
		Total		150
Course:		Discrete Mathematics		Lecture
UGCS10		(Credits : 2 Lectures/Week: 3)		S
5				
	Objectives:			
	The purpose of	the course is to familiarize the prospecti	ve learners with	
	mathematical s	tructures that are fundamentally discre	te. This course	
	introduces sets	and functions, forming and solving recu	rrence relations	
	and different co	ounting principles. These concepts are us	eful to study or	
	describe objects	s or problems in computer algorithms an	d programming	
languages		or problems in computer argorithms an	a programming	
languages.				
	Expected Learn	ing Outcomes:		
	• To provi relations	ide overview of theory of discrete objects and partially ordered sets.	, starting with	
		1 2		
	• Study al operatio	oout recurrence relations, generating func	tion and	
	• Give an	understanding of graphs and trees, which	are widely	
	used in s	software.		
	Provide	basic knowledge about models of automa	ata theory and	
	the corre	esponding formal languages.		
	• Student	should be able to understand permutation	s and	
	combina	tions and counting principles.		
	6) Student	should be able to evaluate regular express	sions and	
	problems			
	on finite	state automata.		
Unit I	Set Theory : Fu	ndamentals - Sets and subsets, Venn Dia	grams,	15 L

	Operations on sets, Laws of Set Theory, Power Sets and Products,			
	Partition of sets, The Principle of Inclusion - Exclusion.			
	Logic : Propositions and Logical operations, Truth tables, Equivalence,			
	Implications, Laws of Logic, Normal forms, Predicates and quantifiers,			
	Mathematical Induction.			
	Functions: Definition of function. Domain, co domain and the range of a			
	function. Direct and inverse images. Injective, surjective and bijective			
	functions. Composite and inverse functions.			
	Recurrence Relations			
	Relations: Definition and examples. Properties of relations, Partial			
	Ordering sets, Linear Ordering Hasse Daigrams , Maximum and			
	Minimum elements, Lattices Recurrence Relations: Definition of			
	recurrence relations, Formulating recurrence relations			
	Methods of solving recurrence relations- Back tracking method, Linear			
Unit II	homogeneous recurrence relations with constant coefficients. Solution			
	of recurrence relation by the method of generation functions			
	Parmutations and Combinations: Partition and Distribution of objects			
	Demonstrations and Combinations. Taittion and Distribution of objects,			
	Permutation with distinct and indistinct objects, Binomial numbers,			
	Combination with identifies: Pascal Identify, Vandermonde's Identify,			
	Pascal triangle, Binomial theorem, Combination with indistinct objects.			
	Counting Principles, Languages and Finite State Machine			
	Counting Principles: Sum and Product Rules, Two-way counting, Tree			
	diagram for solving counting problems, Pigeonhole Principle (without			
	proof); Simple examples, Inclusion Exclusion Principle (Sieve formula)			
	(Without proof).			
Unit III	Languages, Grammars and Machines: Languages regular Expression			
	and Regular languages. Finite state Automata grammars. Finite state			
	machines. Cödel numbers Turing machines			
	Desite Charles Theorem Charles Charles States			
	Basic Graph Theory: Graphs, Trees, Characterisation of Trees, Rooted			
	Tees.			
	Textbook.			
	Discrete Mathematics and Its Applications Seventh Edition by			
	Kenneth H. Rosen, McGraw Hill Education (India) Private			
	Limited (2011)			
	• Norman L. Biggs, Discrete Mathematics, Revised Edition,			
	Clarendon Press, Oxford 1989.			
	Data Structures Seymour Lipschutz, Schaum's out lines,			
	McGraw- Hill Inc.			
	Additional Reference:			
	• Elements of Discrete Mathematics: C.L. Liu, Tata McGraw-Hill			

	Edition .	
	 Concrete Mathematics (Foundation for Computer Science): Graham, Knuth, Patashnik Second Edition, Pearson Education. Discrete Mathematics: Semyour Lipschutz, Marc Lipson, Schaum's out lines, McGraw- Hill Inc. Foundations in Discrete Mathematics: K.D. Joshi, New Age Publication, New Delhi. Links: <u>https://www.tutorialspoint.com/discrete_mathematics/</u> <u>https://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf</u> <u>https://www2.cs.duke.edu/courses/spring09/cps102/Lectures/Book.pdf</u> 	
Sr.	Practical's of UGCS105	
No.		
No. 1	Laws of Set Theory, The Principle of Inclusion - Exclusion.	
No. 1 2	Laws of Set Theory, The Principle of Inclusion - Exclusion. Propositions and Logical operations, Equivalence	
No. 1 2 3	Laws of Set Theory, The Principle of Inclusion - Exclusion. Propositions and Logical operations, Equivalence Mathematical Induction.	
No. 1 2 3 4	Laws of Set Theory, The Principle of Inclusion - Exclusion. Propositions and Logical operations, Equivalence Mathematical Induction. Graphs of standard functions such as absolute value function, inverse function, logarithmic and exponential functions, flooring and ceiling functions, trigonometric functions over suitable intervals.	
No. 1 2 3 4 5	Laws of Set Theory, The Principle of Inclusion - Exclusion. Propositions and Logical operations, Equivalence Mathematical Induction. Graphs of standard functions such as absolute value function, inverse function, logarithmic and exponential functions, flooring and ceiling functions, trigonometric functions over suitable intervals. Finding transitive closure using Warshall's Algorithm.	
No. 1 2 3 4 5 6	Laws of Set Theory, The Principle of Inclusion - Exclusion. Propositions and Logical operations, Equivalence Mathematical Induction. Graphs of standard functions such as absolute value function, inverse function, logarithmic and exponential functions, flooring and ceiling functions, trigonometric functions over suitable intervals. Finding transitive closure using Warshall's Algorithm. Partial ordering sets, Hasse diagram and Lattices.	
No. 1 2 3 4 5 6 7	Laws of Set Theory, The Principle of Inclusion - Exclusion. Propositions and Logical operations, Equivalence Mathematical Induction. Graphs of standard functions such as absolute value function, inverse function, logarithmic and exponential functions, flooring and ceiling functions, trigonometric functions over suitable intervals. Finding transitive closure using Warshall's Algorithm. Partial ordering sets, Hasse diagram and Lattices. Problem based on Fibonacci numbers, Tower of Hanoi, Intersection of lines in a plane, Sorting Algorithms.	
No. 1 2 3 4 5 6 7 8	Laws of Set Theory, The Principle of Inclusion - Exclusion. Propositions and Logical operations, Equivalence Mathematical Induction. Graphs of standard functions such as absolute value function, inverse function, logarithmic and exponential functions, flooring and ceiling functions, trigonometric functions over suitable intervals. Finding transitive closure using Warshall's Algorithm. Partial ordering sets, Hasse diagram and Lattices. Problem based on Fibonacci numbers, Tower of Hanoi, Intersection of lines in a plane, Sorting Algorithms. Combination with identities	
No. 1 2 3 4 5 6 7 8 9	Laws of Set Theory, The Principle of Inclusion - Exclusion.Propositions and Logical operations, EquivalenceMathematical Induction.Graphs of standard functions such as absolute value function, inverse function,logarithmic and exponential functions, flooring and ceiling functions, trigonometricfunctions over suitable intervals.Finding transitive closure using Warshall's Algorithm.Partial ordering sets, Hasse diagram and Lattices.Problem based on Fibonacci numbers, Tower of Hanoi, Intersection of lines in a plane, Sorting Algorithms.Combination with identitiesDifferent counting principles.	

ANNEXURE - B

Class: F.Y.B.Sc		Branch: Computer Science	Semester: I			
	Subject: Descriptive Statistics					
Period per Week(Each 48		Lecture	03			
min)		Practical	03			
			Hours	Marks		
Evaluation System		Semester End Exam	2	60		
		Continuous Internal Assessment		40		
		Semester End Practical	2	50		
		Examination	5	50		
		Total		150		
Course: Descriptive Statistics Lectu		Lecture				

UGCS10	(Credits : 2 Lectures/Week: 3)	S
6		
	Objectives:	
	The purpose of this course is to familiarize students with basics of	
	Statistics. This will be essential for prospective researchers and	
	Fynected Learning Outcomes:	
	1) Enable learners to know descriptive statistical concepts	
	2) Enable study of probability concept required for Computer learners	
	3) Enable to understand the fundamental principles of statistical	
	reasoning, achieving proficiency in data analysis	
	4) Descriptive statistics helps us to understand the data and its properties	
	by use of central tendency and variability.	
	5) Interential statistics helps us to infer properties of the population from	
	a given sample of data.	
	equip students with consequently requisite quantitative skills that they	
	can employ and build on in flexible ways	
	Data Presentation	
	Data types : attribute, variable, discrete and continuous variable	
	Data presentation : frequency distribution, histogram o give, curves,	
Unit I	stem and leaf display	15 L
	Introduction to R Programming : introduction, Environment, Variable,	
	Operators, Decision Making, Loops, Functions, String, Vectors, List,	
	Matrices, Arrays, Factors, Data Frame, R Charts & Graphic, R Statistics	
	Measures of Central tendency: Mean, Median, mode for raw data,	
	discrete, grouped frequency distribution.	
	Measures dispersion: Variance, standard deviation, coefficient of	
	variation for raw data, quartiles, quantiles Real life examples	
Unit II	Correlation and Regression: bivariate data scatter plot correlation	15 L
	Karl Pearson's coefficients of correlation	
	Linear regression: fitting of linear regression using least square	
	regression	
	Probability : Random experiment sample space events types and	
	operations of events Probability definition : classical axiomatic	
	Elementary Theorems of probability (without proof) $0 \le P(A) \le 1$ P(A)	
	$B_{1} - P(\Delta) + P(B) - P(\Delta - B) P(\Delta') = 1 - P(\Delta) P(\Delta) < P(B) \text{ if } \Delta - B$	
Unit III	$D = I(M) + I(D) = I(M D)$, $I(M) = I(M), I(M) \leq I(D)$ If $M D$ Conditional probability 'Bayes' theorem independence Examples on	15 T
	Probability	15 L
	Standard distributions: random variable: discrete continuous	
	expectation and variance of a random variable nmf ndf adf	
	reliability	
	renaonity	

	Introduction and properties without proof for following
	distributions: binomial, normal, chi-square, t, F. Examples
	Text Book:
	• Trivedi, K.S.(2001) : Probability, Statistics, Design of
	Experiments and Queuing theory, with applications of Computer
	Science, Prentice Hall of India, New Delhi
	Additional References:
	1) Ross, S.M. (2006): A First course in probability. 6th Ed ⁿ Pearson
	2) Kulkarni, M.B., Ghatpande, S.B. and Gore, S.D. (1999): common
	statistical tests. Satyajeet Prakashan, Pune
	3) Gupta, S.C. and Kapoor, V.K. (1987): Fundamentals of
	Mathematical Statistics S. Chand and Song, New Dalhi
	A) Gupta S C and Kapoor V K (1999): Applied Statistics S Chand
	and
	Son's, New Delhi
	5) Montgomery, D.C. (2001): Planning and Analysis of Experiments,
	wiley.
	Links:
	https://www.tutorialspoint.com/statistics/hypothesis_testing.ht
	<u>m</u>
	 <u>https://2012books.lardbucket.org/pdfs/beginning-statistics.pdf</u>
	 <u>http://www.math.louisville.edu/~pksaho01/teaching/Math662</u>
	TB-09S.pdf
	Practical's of UGCS106/ST
a N	Descriptive Statistics Introduction to Probability & Hypothesis testing (To be
Sr. No.	implemented using R)
	Data entry using, functions, c(), scan (), Creating vectors, Mathematical Operations:
1	** +/-/*/ / ^, exp, log, log10, etc, creating vector of text type, useful functions: data,
-	frame, matrix operations, seq(), split() etc.
2	Frequency distribution using cut(), table()
3	Data presentation
4 <i>F</i>	Measures of clearing and hypersion
5	Interstation of skewness and kurtosis, Correlation and regression
0 7	Problems based on binomial distribution & relating of binomial distribution
/ Q	Problems based on normal distribution & plotting of normal distribution
0 0	Plotting pdf_cdf_pmf_for_discrete and continuous distribution
10	t test normal test. E test
10	ו נכזו, ווטוווומו נכזו, ו' נכזו

ANNEXURE - C

Course:	Database Management Systems 1		
UGCS104	(Credits : 2 Lectures/Week: 3)		
	Objectives:		
	The objective of this course is to introduce the concept of the DBMS with respect to the relational model, to specify the functional and data requirements for a typical database application and to understand creation, manipulation and querying of data in databases		
	Expected Learning Outcomes		
	• Students should be able to evaluate business information problem and find the requirements of a problem in terms of data.		
	• Students should be able to design the database schema with the use of appropriate data types for storage of data in database.		
	• Students should be able to create, manipulate, query and back up the databases.		
	• Students should be able to understand and design ER models.		
	• Students should be able to understand normalization		
	 Students should be able to understand and apply DDL and DML statements. 		
	Introduction to DBMS – Database, DBMS – Definition, Overview of DBMS, Advantages of DBMS, Levels of abstraction, Data independence, DBMS, Architectures		
	Data models - Client/Server Architecture Object Based Logical		
	Model, Record Based Logical Model (relational, hierarchical,		
	network)		
	Entity Relationship Model - Entities, attributes, entity sets,		
Unit I	participation constraints, weak entities, aggregation / generalization	15 T	
	Conceptual Design using ER (entities VS attributes, Entity Vs	15 11	
	relationship, binary Vs ternary, constraints beyond ER)		
	Relational data model– Domains, attributes, Tuples and Relations,		
	Relational Model Notation, Characteristics of Relations, Relational		
	Null constraint Check constraint		
	ER to Table - Entity to Table, Relationship to tables with and		
	without key constraints.		
Unit II	Schema refinement and Normal forms: Functional dependencies,	15 I	
	first, second, third, and BCNF normal forms based on primary keys,	13 L	

	lossless join decomposition. Relational Algebra operations	-			
	(selection, projection, set operations union, intersection,				
	difference, cross product, Joins -conditional, equi join and natural				
	joins, division)				
	Introduction to MySQL				
	DDL Statements - Creating Databases, Using Databases, datatypes,				
	Creating Tables (with integrity constraints – primary key, default,				
	check, not null), Altering Tables, Renaming Tables, Dropping				
	Tables, Truncating Tables, Backing Up and Restoring databases				
	DNL Statements – Viewing the structure of a table insert, update,				
	conditional select in clause between clause limit				
	Conditional select, in clause, between clause, innit,				
	Functions – Aggregate functions (count, min, max, avg, sum), group by along having along String Functions (connect instra left, right mid				
	by clause, having clause String Functions (concat, instr, ieit, right, mid,				
	length, icase/lower, ucase/upper, replace, strcmp, trim, itrim, rtrim),				
	Math Functions (abs, cell, floor, mod, pow, sqrt, round, truncate) Date				
	Functions (addate, datediff, day, month, year, hour, min, sec, now,				
Unit III	reverse)	15 L			
	Joining Tables – inner join, outer join (left outer, right outer, full				
	outer)				
	Subqueries – subqueries with IN, EXISTS, subqueries restrictions,				
	Nested				
	subqueries, ANY/ALL clause, correlated subqueries	_			
	Text books:				
	• Ramez Elmasri & Shamkant B.Navathe, Fundamentals of				
	Database Systems, Pearson Education, Sixth Edition, 2010				
	Bamakrishnam Gahrka Databasa Managamant Systems				
	McGraw Hill 2007				
	Joel Murach, Murach's MySOL, Murach, 2012				
	Additional References:				
	Robert Sheldon, Geoff Moes, Begning MySOL, Wrox Press,				
	2005.				
	Links:				
	 <u>https://www.studytonight.com/dbms/</u> 				
	 <u>http://nptel.ac.in/courses/106106093/</u> 				
	• <u>http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/idbs-</u>				
	<u>slides.html</u>				
C.N					
Sr. No.	Practical's of UGCS104				
I I					

	Draw E-R diagram and convert entities and relationships to table.
2	Write relational algebra queries on the tables created in Practical-1.
	Perform the following in MySQL
	Viewing all databases
	Creating a Database
3	• Viewing all Tables in a Database
	Creating Tables (With and Without Constraints)
	 Inserting/Updating/Deleting Records in a Table
	Saving (Commit) and Undoing (rollback)
	Perform the following:
4	Altering a Table
4	 Dropping/Truncating/Renaming Tables
	Backing up / Restoring a Database
	Perform the following:
5	Simple Queries
5	 Simple Queries with Aggregate functions
	Queries with Aggregate functions (group by and having clause)
	Queries involving
6	Date Functions
0	String Functions
	Math Functions
	Join Queries
7	Inner Join
	Outer Join
	Sub queries
8	• With IN clause
	With EXISTS clause
	Views
9	Creating Views (with and without check option)
,	Dropping views
	Selecting from a view
10	DCL statements
10	Granting and revoking permissions

ANNEXURE - D

Sr. No.	Practical's of PGCS301/AOS
	Advanced Operating System
1	Demonstrate solution for race condition using synchronized block
2	Interprocess Communication in Java
3	Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination):Shared Preferences (Store private primitive data in key-value pairs)Internal Storage (Store private data on the device memory)

	External Storage (Store public data on the shared external storage)
4	Write Android Application to demonstrate data storage with SQLite Database with 3 fields Name, No, Class.